Notice
Recent Posts
Recent Comments
목록2018/11/17 (1)
Data Analysis for Investment & Control
Gaussian Mixture Model, 이하 GMM은 클러스터링 방법 중 하나로 데이터의 군집을 가우시안 모델로 표현하는 기법이다. 가우시안 모델의 평균과 분산(μ와 σ)으로부터 군집의 특성을 알 수 있다. 데이터의 분포로부터 가우시안 분포를 선형 결합한 형태라는 가정에서 처리를 한다. GMM에 대한 설명은 아래 블로그에서 그 개념을 잘 설명하고 있다. >> 수식없이 이해하는 Gaussian Mixture Model 먼저 다음과 같이 주어졌다고 하자. 데이터 군집 수 : K각 군집의 평균과 분산 : μk = {μ1, μ2, ..., μK}, σk = {σ1, σ2, ..., σK}표본 데이터 수 : N표본 데이터 xn = {x1, x2, ... xN} 입력 데이터에 대한 확률 분포 함수를 다음과 같이..
MachineLearning/Clustering
2018. 11. 17. 19:39